Micro flow bio-molecular computation.

نویسندگان

  • A Gehani
  • J Reif
چکیده

In this paper we provide a model for micro-flow based bio-molecular computation (MF-BMC). It provides an abstraction for the design of algorithms which account for the constraints of the model. Our MF-BMC model uses abstractions of both the recombinant DNA (RDNA) technology as well as of the micro-flow technology and takes into account both of their limitations. For example, when considering the efficiency of the recombinant DNA operation of annealing, we take into account the limitation imposed by the concentration of the reactants. The fabrication technology used to construct MEMS is limited to constructing relatively thin 3D structures. We abstract this by limiting the model to a small constant number of layers (as is done with VLSI models). Besides our contribution of the MF-BMC model, the paper contains two other classes of results. The main result is the volume and time efficient algorithm for message routing in the MF-BMC model, specifically useful for PA-Match. We will show that routing of strands between chambers will occur in time O(N x D/ m x n), where N is the number of strands in the MF-BMC, n is the number of chambers where RDNA operations are occurring, D is the diameter of the topology of the layout of the chambers, and m is proportional to the channel width. Operations that need annealing, such as PA-Match, are shown feasible in O(N2logN/n/n) volume instead of the previous use of omega(N2) volume, with reasonable time constraints. Applications of the volume efficient algorithm include the use of the Join operation for databases, logarithmic depth solutions to SAT (Boolean formula satisfiability) problems and parallel algorithms that execute on a PRAM. Existent algorithms can be mapped to ones that work efficiently in the MF-BMC model, whereas previous methods for applications such as PRAM simulation in BMC were not both time and volume efficient. Our other class of results are theoretical lower bounds on the quantities of DNA and the time needed to solve a problem in the MF-BMC model, analogous to lower bounds in VLSI. We bound the product BT from below, and further show that BT2 has a stronger lower bound of I2. Here B is the maximum amount of information encoded in the MF-BMC system at a time. T is the time for an algorithm to complete, and I is the information content of a problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mechanical micro molecular mass sensor

One of the bio-sensing mechanisms is mechanical. Rather than measuring shift in resonance frequency, we adopt to measure the change in spring constant due to adsorption, as one of the fundamental sensing mechanism. This study explains  determination of spring constant of a surface functionalized micro machined micro cantilever, which resonates in a trapezoidal cavity-on Silicon wafer, with the ...

متن کامل

A mechanical micro molecular mass sensor

One of the bio-sensing mechanisms is mechanical. Rather than measuring shift in resonance frequency, we adopt to measure the change in spring constant due to adsorption, as one of the fundamental sensing mechanism. This study explains  determination of spring constant of a surface functionalized micro machined micro cantilever, which resonates in a trapezoidal cavity-on Silicon wafer, with the ...

متن کامل

Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment.

This work investigated the feasibility of treating micro-polluted surface water for drinking water production with a bio-diatomite dynamic membrane reactor (BDDMR) at lab-scale in continuous-flow mode. Results indicate that the BDDMR was effective in removing COD(Mn), DOC, UV(254), NH(3)-N and trihalomethanes' formation potential (THMFP) at a hydraulic retention time (HRT) of 3.5h due to its hi...

متن کامل

Formulation & Evaluation of Nimesulide Bio-Micro Dwarfs using A Novel Bio-retardant from the Rhizomes of Zingiber officinale

The current aim of our research work is to isolate bio-polymer from fresh rhizomes of Zingiber officinale & to evaluate its retardibility by formulating microdwarfs containing nimesulide as a model drug. The bio-material was isolated by a simplified method. Six different bio-micro dwarf formulations were prepared using isolated bio-material as a retardant. The formulated microcapsules were eval...

متن کامل

Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing

The aerodynamic features of a bio-realistic 3D fruit fly wing in steady state (snapshot) flight conditions were analyzed numerically. The wing geometry was created from high resolution micro-computed tomography (micro-CT) of the fruit fly Drosophila virilis. Computational fluid dynamics (CFD) analyses of the wing were conducted at ultra-low Reynolds numbers ranging from 71 to 200, and at angles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bio Systems

دوره 52 1-3  شماره 

صفحات  -

تاریخ انتشار 1999